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Wave front for a reaction-diffusion system and relativistic Hamilton-Jacobi dynamics
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The problem of wave-front propagation for thedimensional reaction-diffusion system involving
Kolmogorov-Petrovskii-Piskunov kinetics and the diffusion transport with a finite velocity has been consid-
ered. By using a scaling procedure we have given an asymptotic derivation of the equation governing the
evolution of a reaction front in the long-time large-distance limit. It has been found that this equation is
identical in form to the relativistic Hamilton-Jacobi equation. In the case of a constant value of chemical rate
function we have derived exact formulas for the position of reaction front and the speed of propagation by
using relativistic mechanics techniqugS1063-651X99)09005-4

PACS numbd(s): 82.20—w, 05.70.Ln, 05.60-k

I. INTRODUCTION can also study the Langevin equations associated with the
KPP equation(1l) to analyze deviations from deterministic
The Kolmogorov-Petrovskii-PiskunoKPP) equation behavior[16,17.
In this paper we present a mean-field theory for the
ap Pp reaction-diffusion system involving diffusion with a finite
E:DE+UP(1_p) (1) speed and KPP kinetics. Recenfl$2] we introduced a

probabilistic technique for analyzing reaction front dynamics
for a one-dimensional reaction-diffusion system. By using a
and its various generalizations have attracted considerabkealing procedure and functional integral technique together
interest in the past, because of a huge number of physicalith large deviation theory for the Poisson random walk we
chemical, and biological problems that can be described imave derived the exact formula for the reaction front speed.
terms of these equatiofid—7]. Equation(1) is the simplest One of the motivations for the present study is to reinterpret
reaction-diffusion equation combining both the linear diffu- this probabilistic method in terms of the nonlinear partial
sion transport process and nonlinear chemical kinetics andifferential equation(PDE)-technique based on Hamilton-
admitting a traveling wave solution of the form(t,z) Jacobi type equatior{48-21. This interpretation allows us
= y(t—uz). The basic advantage of the KPP equation is thato extend the previous method to thelimensional case in-
the speed of traveling wave can be foundexactlyin terms  volving nonuniform space distribution of the chemical rate
of the diffusion coefficienD and the growth rate constad{  function, and offers a powerful way of finding the position of
namely, u=J4UD (so-called minimal speed of propaga- a reaction front and its speed of propagation.
tion). However, from a physical point of view, the KPP
equation has one disadvantage that can be explained as fol- Il. FORMULATION OF THE PROBLEM
lows. It is easy to see from Edl) that the kinetic term
Up(1—p) ensures that the maximal growth rate of the scalar We consider a scalar fiele(t,r) (temperature, concentra-
field p occurs at those regions in the space wheig nearly  tion, etc) whose dynamics is governed by the transport equa-
zero. At the same time the diffusion approximation for trans-tion with a reaction rate term of the KPP type,
port processes is a very poor one for those regions. This is
due to the fact that the ordinary diffusion terv?p/dz> p .
gives rise to the infinite speed of heat/mass propagation: E*’V“]:U(Sr)P(l_P)’ reR 2
p(t,z) is nonzero at any timé#0 no matter how large

becomes. This might lead to an overestimation of the miniy,hare the reaction ratd(er) is a slowly varying function of

mal speed of wave propagation, especially when the chemi g space coordinate; is a small parameter which plays a
cal kinetics constantl is relatively large. One way to over- very important role in what followst = (x; , X, X,)
il il y A0/

come this problem is to modify the KPP kinetics introducing To take into account the finite speed of the transport pro-

the preheated zone ahead of the reaction front where théaess we assume that the heat/mass Jliscdetermined as an

chemical reaction is negligible]. A“Oth?f way Is to moqlify ._integral over time of the temperature/concentration gradient
the transport process based on the diffusion apprOX|mat|oH1ultiplied by the flux kermneR(t—s) [10]

taking into account the finite speed of heat/mass propagation

[9-12]. A quite different approach is based on the lattice-gas .

models for which the KPP equation can be viewed as the J(t,r):_Df R(t—s)Vp(s,r)ds. (3)
mean-field approximatiofil3,14] (see the revieyl15]). One 0

In this paper we choose an exponential kernel with a single
*Electronic address: sergei.fedotov@umist.ac.uk relaxation timer,
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1 t—s the reaction front separating the region whexdt,r)—0
R(t—s)=—exp —|. (4 and the region wherg®(t,r)—1.

gqu;i?)’n the system(2)—(4) reduces to the classical KPP lll. REACTION FRONT EQUATION
Now we present a heuristic derivation of the equation
‘9_1’: DAp+U(er)p(1—p) (5) governing the evolution of the reaction front. By using Egs.
ot '

(7)—(9) we can write down the equation fer(t,r):

_DJt t—sAs q
= Oex oy p°(s,r)yds

u(r)
+Tp8(l—p8), reR" (12

If U=0, then we have the telegraph equatj®r-11]

ap®
Pp 0 at
T?p-f-—p:DAp, (6)

which describes a heat/mass transport by waves with a finite
speedv = \/D/7. The small value ofr explains the fact that

in practice the diffusion approximation for the transport pro-and the initial condition
cess appears to be sufficiently accurate in typical cases.

To summarize, we have the equation p°(0r)= to(r).
dp D[t t—s . . -
i —f exp —|Ap(s,r)ds It is easy to see from Eq12) that in the limite—0 the
TJoO T . . .
reaction rate is very fast and the transport process is very
+U(erp(l—p), reRr" (7)  slow and therefore the solutiosf at each point, where®
#0, tends quickly to the stable equilibrium valpg=1. The
with the initial condition set
PON)=oler), ® Q={reR" lim p*(t,1)=1} (13
e—0

where the initial functionfy(r) has bounded support

Qo={reR™ o(r)=1}. (9)  propagates throughout the region whefe-0 ase—0 and
icul h iaht h ‘ £ th I our basic purpose is to find the location of the reaction front
In particular, the support might have a form of the ball yhe poundary of the sé?,) and the rate at which it moves.

such that Taking into account that Eqé3) and(4) are equivalent to
n
1 if >, e2P<R? 3 1. D
p(0r)= =1 (10) —=—--J-—Vp, JOr)=0,
) ot T T
0 otherwise.

It follows from here that the small parametercan be con- We can rewrite Eq(12) in the form

sidered as a measure of ratio between the characteristic front

thickness{D/U and characteristic length scale of the sup- 92p¢

port of initial distribution. eT
Our purpose is to study the behavior of solutions of Egs.

(7)—(9) for large times of ordes ~* and find out whether or u(r)

not there exists a traveling wave solution to EGB—(9) in =eDAp®+ ——p*(1—p®). (14)

the limitt—oo(e—0). In this paper we will follow Freidlin’s &

idea[6,7] that if a reaction-diffusion system possesses one

unstable and one stable equilibrium, then, after appropriat&ince p®(t,r)=0 we can make an exponential transforma-

rescaling in the space and time variables, the solution of théon

reaction-diffusion system converges to the indicator function

of the set whose boundary may be considered as a moving

wave front separating the stable and unstable regions. pe(t,r)= ex;< -
We expect that after the hyperbolic scaling- t/e,

r—r/e the new scalar field

&

ap
ot

e +[1-7U(r)+27U(r)p?]

G®(t,r)
- ) G®(t,r)=0. (15

This transformation has proved to be very useful in studying

. tr asymptotic problems for reaction-diffusion equatiosee,

p (“):P(g’g) 1D for example[19,20). The new functionG2(t,r) will deter-
mine the location of the reaction front in the limit-0.

takes only two values 0 and 1 as-0. The problem now is Straightforward calculation shows th&?®(t,r) satisfies

to derive the equation governing the geometrical evolution othe nonlinear PDE
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JGE\ 2 IGE ) wherec is the speed of light. It is interesting to note that the
—T( o) T[1=7U)]——+D(VG*)"+U(r) "mass” m(r) depends on the space coordinatgsee Eq.
(20)].
J2GE IGE The Hamiltonian associated with this equation is
=—eT— +8DAGS+U(I‘)(1—27 )
ot Jt H(r,p)=Vm2(r)c*+c?p?+ o(r). (21)
Xexr{ _ E) (16) SincedG/dt=—H Eq. (18) can be rewritten as
&
§+\/m2(r)c"’+cz(VG)2+ (r)=0 (22)
Since exp{-G°/e)—0 ase—0 for G*>0 we may conclude ot ¢
from Eq. (16) that the limiting function
or
G(t,r)=IlimG*(t,r 1
" <0 " " aG+\/1U +12+DV62+1U 1—0
FNg| YOt r (Ve R U= 2 =0
obeys the nonlinear PDE of the first order, (23
2 G The advantage of such an analogy is that we can write down
— T(E +[1—TU(I')]W+D(VG)2+ U(r)=0 the solution of Eq(18) or Eq.(22) as
t
[G(t,r)>0]. (18 G(t,r)=inf[ fOLdS: r(o)=r, r(t)eﬂo], (24

The advantage of the exponential transformatid®) is  \here the Lagrangiah has the forn{22]
now apparent: Eq18) allows us to consider the problem of

wave propagation for the reaction-diffusion systéh?) in 1 /dr\2

the geometric optic approximatid®,7,19,2Q. The location L=-m(r)c®\/1— _Z(d_) —o(r). (25
of the reaction front can be determined as the boundary of c=\as

the set

That is, the functionG(t,r) determining the reaction front
_ R 0. 1 posnlon_[see.Eq.(lg)] can be computed as the. minimum
S=ire G(t.r)>0} (19 over trajectories fromm(0)=r to r(t) € Qy. The optimal tra-

It is clear from Eq.(15) that p°(t,r)—0 ase—0 for r jectories satisfy the Euler-Lagrange equation

e S. The fact that the boundary of the setoincides with d /oL L
that of (), [see Eq.(13)] has to be proved. It is easy to see _(_) - _—-o. (26)
that Eq.(18) goes over into the classical Hamilton-Jacobi ds\ gr oar

equation in the limitr—0, ) _ ) .
Using the relationg20), we find an expression for the La-

G grangianL in terms of the phenomenological parameters
E+D(VG)2+U(r)=O, 7, D, andU(r),
L . - : 1 1 dr\? 1 1
which is a basic tool for determining the reaction front dy- | =-— —( un+—|\/1- 1(— - —( U(r)— —),
namics for the classical KPP equatifit,19,20Q. 2 T Dlds) 2 T
Thus, the analogy with the relativistic mechanics allows
IV. RELATIVISTIC HAMILTON-JACOBI EQUATION us to derive the explicit expression for the functiGit,r)

and thereby to find the reaction front position and its speed.
It is clear that the calculation d&(t,r) is greatly simplified
when the reaction rate constdu{r) does not depend on the
space coordinate (see next sectign

This section concerns the derivation of the explicit repre
sentation formula folG(t,r). The basis idea is that E¢L8)
is identical in form to an equation arising in classical relativ-
ity theory. If we introduce new parameters

D V. EXACT FORMULA FOR A WAVE-FRONT
- PROPAGATION RATE

1 1 T 1
@(r)ZE[U(f)—;1 m(r)=E[U(r)+;, co=

(20) We now consider the case of a constant value of the
) ] _ . . chemical rate functiotJ for which the action functionaG
then Eq.(18) can be rewritten in the form of the relativistic can pe calculated exactly. This will allow us to find explicit
Hamilton-Jacobi equation for a particle with a massnov-  expressions for the position of reaction front and the speed of
ing in the potential fieldp(r) [22], propagation.

) When U = const, the optimal trajectory is that of a free
9G 20N 42 2_ n particle, i.e., the straight line connecting the pointandy
E*l-(p(l') —m“(r)c*—c“(VG)*=0, reR PN

01
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—-r

r(s)=(yT s+r, O0<s=<t.

(27)

After substituting Eq(27) into Egs.(24) and(25) the action
integral (24) can be written as

r\ 2

) —got]. (28

1/(y—
1‘§(T

G(t,r)= inf
yelo

[—mczt

Let us denote by (r,Q,) the minimal distance between
the pointr and the seX),. Then, in terms of the phenom-
enological parameters, D, and U, the action functional
G(t,r) can be rewritten as

T |(r,Qo) 2 t(1
\/1‘5(f) *z(:‘u)-

(29

t 1
G(tn=-5|U+=-

2
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By equatingG(t,r) to zero, we find the exact formula for the
position of the wave front(t),

r(t)=R+ut, (33

with u determined by Eq(30).

We may call the ling (t) =R+ ct with c= D/ the pri-
mary wave front, referring to the fact that(t,r)=0 for r
>R+ ct. In general, the formula for the propagation speed
can be written as

4bU if 7U<1,
1+7U
u= D
\/: if TU>1.
T

Now we are in a position to determine the exact formula

for the reaction front propagation rate. It follows from Eq.

(26) that the seS={r e R": G(t,r)>0} wherep®(t,r)—0 as
£—0 can be represented as

S={reR™ I(r,Qq)>ut},

U=C\/l—

It is clear that the velocityu can be considered as the
propagation rate of the wave front. It follows from E§O)
that the effect of diffusion with finite velocity#U # 0) is to

where

1-7U
1+7U

> J4DUu
T 1+ 17U

sUu<1l. (30

In the limiting case when the relaxation timeis small
compared with the chemical timg 1, that is, 7lU<1, we
can neglect the effect of finiteness of the velocity of heat
propagation.

VI. SUMMARY

In this paper we have analyzed thedimensional
reaction-diffusion system involving diffusion with finite ve-
locity and Kolmogorov-Petrovskii-Piskunov kinetics. By us-
ing hyperbolic scaling and nonlinear PDE techniques we
have derived an equation governing the reaction front dy-
namics in the long-time large-distance limit. We have shown

decrease the propagation rate corresponding to the classiGght the resulting equation is identical to the relativistic

KPP equation. The last restrictiolJ<1 comes from the
fact that the “speed of light’c= D/ is the maximal ve-

Hamilton-Jacobi equation for a particle moving in a potential
field. In the case of a constant value of chemical rate we have

locity of heat/mass propagation. In other words, wave-fronijerived the exact formula for the speed of reaction front and

motion with greater velocity than the “speed of light’is
impossible.

If the support of the initial distribution has a form of the
ball with the radiusR,

n
Qoz[z x?<R?: 1,021], (3D)
i=1
then the action functionat depends only onm= \/E{lezi
andt,

11R_r2 t 32
2 ot. (32

G(t,r)=—mcit

shown that the wave front propagates slower than that of the
classical KPP equation.

It should be noted that there are several possible direc-
tions to investigate. First, one may formulate the whole prob-
lem in terms of variational inequality19,20Q and give the
rigorous proofs for the results presented in this paper. Also,
it would be interesting to apply the method developed here to
the analyses of turbulent burning velocf33—-25.
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